Robust tracking error portfolio selection with worst-case downside risk measures

نویسندگان

  • Aifan Ling
  • Jie Sun
  • Xiaoguang Yang
چکیده

This paper proposes downside risk measure models in portfolio selection that captures uncertainties both in distribution and in parameters. The worst-case distribution with given information on the mean value and the covariance matrix is used, together with ellipsoidal and polytopic uncertainty sets, to build-up this type of downside risk model. As an application of the models, the tracking error portfolio selection problem is considered. By lifting the vector variables to positive semidefinite matrix variables, we obtain semidefinite programming formulations of the robust tracking portfolio models. Numerical results are presented in tracking SSE50 of the Shanghai Stock Exchange. Compared with the tracking error variance portfolio model and the equally weighted strategy, the proposed models are more stable, have better accumulated wealth and have much better Sharpe ratio in the investment period for the majority of observed instances. & 2013 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Utility Maximization with Limited Downside Risk in Incomplete Markets

In this article we consider the portfolio selection problem of an agent with robust preferences in the sense of Gilboa & Schmeidler (1989) in an incomplete market. Downside risk is constrained by a robust version of utility-based shortfall risk. We derive an explicit representation of the optimal terminal wealth in terms of certain worst case measures which can be characterized as minimizers of...

متن کامل

Optimal Portfolio Selection for Tehran Stock Exchange Using Conditional, Partitioned and Worst-case Value at Risk Measures

This paper presents an optimal portfolio selection approach based on value at risk (VaR), conditional value at risk (CVaR), worst-case value at risk (WVaR) and partitioned value at risk (PVaR) measures as well as calculating these risk measures. Mathematical solution methods for solving these optimization problems are inadequate and very complex for a portfolio with high number of assets. For t...

متن کامل

Robust Portfolio Optimization with risk measure CVAR under MGH distribution in DEA models

Financial returns exhibit stylized facts such as leptokurtosis, skewness and heavy-tailness. Regarding this behavior, in this paper, we apply multivariate generalized hyperbolic (mGH) distribution for portfolio modeling and performance evaluation, using conditional value at risk (CVaR) as a risk measure and allocating best weights for portfolio selection. Moreover, a robust portfolio optimizati...

متن کامل

Robustifying Convex Risk Measures: A Non-Parametric Approach

This paper introduces a framework for robustifying convex, law invariant risk measures, to deal with ambiguity of the distribution of random asset losses in portfolio selection problems. The robustified risk measures are defined as the worst-case portfolio risk over the ambiguity set of loss distributions, where an ambiguity set is defined as a neighborhood around a reference probability measur...

متن کامل

A two-stage robust model for portfolio selection by using goal programming

In portfolio selection models, uncertainty plays an important role. The parameter’s uncertainty leads to getting away from optimal solution so it is needed to consider that in models. In this paper we presented a two-stage robust model that in first stage determines the desired percentage of investment in each industrial group by using return and risk measures from different industries. One rea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015